Chapter Five: Socio-Economic Status as de facto Bilingual Education

Socio-economic status has been shown to be a consistent predictor of student success. Of special interest here is that studies of language minority students have found SES to be a strong predictor of school success, independent of the effects of first language (Rosenthal, Milne, Ellman, Ginsburg, and Baker, 1983; McArthur, 1993).

In this chapter, I discuss, and to some extent re-analyze, data from three reports on the success of language minority students, and argue that in each case socio-economic status plays a clear role. At no time do I argue that SES is the only determinant of academic success. I will argue that socio-economic factors should not be ignored, and that examining why high SES is correlated with success in school may help us design better programs.

Study 1: Toronto

Cummins (1984) presents data from surveys conducted in 1969 and 1975 by the Toronto Board of Education on placement of students in “High Academic” programs (college preparatory). SES classification was based on parents’ occupation and all children were in English-only programs. As Cummins points out, there were large differences among language minority groups: A much larger percentage of students who spoke Chinese as a first language was included in the high academic program, even compared to native speakers of English, regardless of SES. Nevertheless, SES played a clear role.

Table 5.1, from Cummins’ table 4, confirms that there is little difference between native and non-native speakers of English in academic success when SES is controlled. Among low SES immigrant language minority children, nearly half were in the college preparatory stream, a higher percentage than Canadian-born native speakers of English, while for language minority students born in Canada, an even higher percentage of low SES children were in the high academic program. Figures for higher SES students are similar.
Table 5.1.
Percent of Students in High Academic (College Preparatory) Program (1979 data)

<table>
<thead>
<tr>
<th>First Language</th>
<th>Low SES</th>
<th>High SES</th>
<th>d</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not English: Born in Canada</td>
<td>62% (2163/3489)</td>
<td>75% (2357/3158)</td>
<td>.28</td>
<td>.14</td>
</tr>
<tr>
<td>Not English: Born outside Canada</td>
<td>48% (2170/4521)</td>
<td>67% (1995/2971)</td>
<td>.11</td>
<td>.06</td>
</tr>
<tr>
<td>English: Born in Canada</td>
<td>40% (1182/4270)</td>
<td>67% (6276/9270)</td>
<td>.87</td>
<td>.40</td>
</tr>
</tbody>
</table>

*from: Cummins, 1984*

But SES had an effect. According to my calculations, the difference between the percentage of low SES and high SES students in the high academic program was significant (for first language not English, born in Canada, chi square = 121.73; for first language not English, born outside Canada, chi square = 21.34; for native speakers of English, chi square = 1892.47; in all cases df = 1). All these differences were easily statistically significant, because of the large sample size. Effect sizes, however, were small (computed from chi squares; see table 5.1, using Johnson, 1989), except for the native speakers of English (r = .40).

My presentation differs from Cummins' table 4; in that table, low SES students are compared with all students, which includes the low SES group. In table 5.1, I compare low SES to the other students, not including the low SES group, which highlights the effect of SES.

As Cummins notes, SES is not the entire story. There is considerable variation in school success among children of equivalent SES and different programs in school produce different results. But SES counts.

**Study 2: Los Angeles**

The Los Angeles Times (October 17, 1995) reported on transfer rates from bilingual programs in the Los Angeles Unified District. Transfer rate refers to the percentage of students who leave bilingual classes and enter mainstream classes. In the United States, this is considered an indication of success in acquiring academic English.

Transfer rates were presented according to high school cluster, which included all elementary and middle schools that fed into the high school. Twenty-seven high school clusters were listed. A great deal, from 3.1% in the cluster high of 15%.

SES was not mentioned in the LA Times' study ranking students receiving AFDC (Aid to Families and Children) and the percentage of children. The scores were normalized, deviation of 17.5. The SES score for the when more than one was designated a cluster.

The correlation between SES and transfer rates was substantial (r = .634, p < .01, n = 7) higher transfer rates. SES thus accounts for transfer rates. This is a remarkable measures, and is much stronger that (study 1).

Inspection of the scatterplot revealed an outlier was removed. The average transfer rate for school that was closer to the expected correlation of r = .705. The difference was not, however, significant. Overall, produced an even more impressive r.

**Study 3: New York**

There have been several articles in the New York City mainstream as quickly as children in have been interpreted by critics of bilingual education programs are superior. (e.g.

Data from New York City confirm this. Table 5.2 presents ty
Table 1.  

demographic (College Preparatory) data (1979 data)

<table>
<thead>
<tr>
<th></th>
<th>High SES</th>
<th>d</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3489</td>
<td>53% (2357/3158)</td>
<td>.28</td>
<td>.14</td>
</tr>
<tr>
<td>1/4521</td>
<td>67% (1995/2971)</td>
<td>.11</td>
<td>.06</td>
</tr>
<tr>
<td>1/4270</td>
<td>67% (6276/9270)</td>
<td>.87</td>
<td>.40</td>
</tr>
</tbody>
</table>

Calculations, the difference between the students in the high academic program English, born in Canada, chi square = 21.34; (in all cases df = 1). Also significant, because of the large sample size (computed from chi squares; see also the native speakers of English (r = .634, p < .01, n = 27); clusters with higher SES ratings had higher transfer rates. SES thus accounted for 40% of the variance in transfer rates. This is a remarkable result, considering the crudeness of the measures, and is much stronger than the effect sizes found in the Toronto data (study 1).

Inspection of the scatterplot revealed the presence of several outliers. In a post-hoc analysis, one outlier was removed (Chatsworth/Granada) and in two cases, the average transfer rate for a cluster was replaced with that of the school that was closer to the expected score. This resulted in an improved correlation of r = .705. The difference between this result and the original correlation was not, however, significant (z = .438), but the adjusted correlation produced an even more impressive r squared (49%).

Study 3: New York

There have been several articles in the press recently, reporting that children in bilingual education in New York do not exit their programs and enter the mainstream as quickly as children in all-English/ESL programs. These reports have been interpreted by critics of bilingual education as a demonstration that all-English programs are superior (e.g. Mujica, 1995).

Data from New York City confirms these reports. (New York Board of Education, 1994). Table 5.2 presents typical transfer rates.
Table 5.2. Exit Rates and ESL/Bilingual Education Participation

<table>
<thead>
<tr>
<th>Entered at</th>
<th>ESL</th>
<th>Bilingual Ed</th>
<th>d</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>79% (3122/3937)</td>
<td>42% (3161/6138)</td>
<td>.60</td>
<td>.29</td>
</tr>
<tr>
<td>Third Grade</td>
<td>59% (154/260)</td>
<td>22% (99/453)</td>
<td>.84</td>
<td>.39</td>
</tr>
</tbody>
</table>

from: NYC Board of Education, 1994

According to my calculations, differences in transfer rates between ESL and bilingual education students were significant (chi square = 789.57 for those entering at kindergarten, chi square = 100.84 for those entering at grade three, df = 1 in both cases). Both chi square values were easily statistically significant. Effect sizes, calculated from the chi square results, were modest.

A likely explanation for these results was presented by Luis Reyes, a member of the New York City Board of Education: “The test ... compared a group of students taking ESL courses with groups of students in the bilingual classes without controlling for external factors, like native literacy of the parents, educational level of the parents, and family income. There were a number of middle class students in the ESL program who came from countries that were more developed ... kids in the bilingual program came from where they hadn’t had full schooling” (quoted in Hennelly, 1995).

A closer look at the data from NYC supports Reyes’ suggestion. In NYC there was a clear relationship between first language and exit rates (table 5.3).

Table 5.3. Exit Rates and First Language

<table>
<thead>
<tr>
<th>Entered at</th>
<th>Non-Spanish</th>
<th>Spanish</th>
<th>d</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kindergarten</td>
<td>75% (2855/3822)</td>
<td>42% (3161/6138)</td>
<td>.42</td>
<td>.21</td>
</tr>
<tr>
<td>Third Grade</td>
<td>50% (150/302)</td>
<td>21% (96/457)</td>
<td>.64</td>
<td>.31</td>
</tr>
</tbody>
</table>

Differences in transfer rates between non-Spanish and Spanish speaking students were statistically significa

There is obviously nothing inherent in the slower exit rate of Spanish-speaking Russian, Korean and Chinese speakers.

In table 5.4, I list the effect sizes (cor discussed here. The Toronto and LA class, while the New York effect sizes are noted earlier, effect sizes for the different. Note, however, that SES was not used to study, while aggregated sco: White (1982) reported that SES c achievement are higher when aggregating the student as the unit of analysis, th: achievement was .22; in 93 studies median correlation of SES with scen relationships reported here are quite consistent with the hypothesis that the

<table>
<thead>
<tr>
<th>SES and English Language Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toronto</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Los Angeles</td>
</tr>
<tr>
<td>New York</td>
</tr>
</tbody>
</table>

Why do higher SES children appear to Previous research and theory provide and it is likely that all of them are corre
12. Education Participation

<table>
<thead>
<tr>
<th>Bilingual Ed</th>
<th>d</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>42% (3161/6138)</td>
<td>.60</td>
<td>.29</td>
</tr>
<tr>
<td>22% (99/453)</td>
<td>.84</td>
<td>.39</td>
</tr>
</tbody>
</table>

Between ESL and Bilingual students, there was no significant difference in transfer rates (chi square = 789.57 for those 0.84 for those entering at grade three. Results were easily statistically significant. The results, were modest.

As presented by Luis Reyes, a member of the community, "The test ... compared a group of students in the bilingual classes, like native literacy of the parents, with those of students whose parents came from countries that were not their home.

There is obviously nothing inherent in the Spanish language that accounts for the slower exit rate of Spanish-speaking children. More likely, Reyes is correct: Russian, Korean and Chinese speakers came from more affluent homes.

In table 5.4, I list the effect sizes (correlation coefficients) for the three studies discussed here. The Toronto and LA effect sizes indicate the impact of social class, while the New York effect sizes are based on program and first language. As noted earlier, effect sizes for the Toronto and New York studies are quite different. Note, however, that SES was measured on individual students in the Toronto study, while aggregated scores were used in the Los Angeles study: White (1982) reported that SES correlations with measures of school achievement are higher when aggregated scores are used: In 489 studies using the student as the unit of analysis, the median correlation of SES with school achievement was .221; in 93 studies using aggregated units of analysis, the median correlation of SES with school achievement was .730. Thus, the relationships reported here are quite consistent with what has been found in previous studies. Interestingly, The New York effect sizes are closer to the Toronto results, and they are also based on individual scores, which is consistent with the hypothesis that they do, in fact, reflect SES differences.

<table>
<thead>
<tr>
<th>Effect Sizes (correlation coefficients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toronto</td>
</tr>
<tr>
<td>Born in Canada</td>
</tr>
<tr>
<td>Born outside Canada</td>
</tr>
<tr>
<td>Los Angeles</td>
</tr>
<tr>
<td>New York</td>
</tr>
<tr>
<td>ESL/Bilingual Ed</td>
</tr>
<tr>
<td>Non-Spanish/ Spanish</td>
</tr>
</tbody>
</table>

SES and English Language Development

Why do higher SES children appear to acquire academic English more quickly? Previous research and theory provide us with several plausible explanations, and it is likely that all of them are correct:
1. They have had more and better education in their primary language, which means more literacy and greater subject matter knowledge.

2. They have caregivers who are more educated, better prepared to help with school work in the primary language, have more time to interact with the school and more knowledge about interacting with the school (Berliner and Biddle, 1995).

3. Their greater affluence means their parents can provide tutoring in the primary language (see e.g. the case of Grace Cho, discussed in chapter two).

4. They live in a more print-rich environment, with many more books in the home (Feitelson and Goldstein, 1986; Ortiz, 1986; Raz and Bryant, 1990; Constantino, 1995; Feigin, 1995). There is a clear relationship between living in a print-rich environment and literacy development (Ortiz, 1986; Krashen, 1988; Snow, Barnes, Chandler, Goodman, and Hemphill, 1991). These children should thus have greater literacy development in the primary language, a prediction consistent with the results of studies showing a strong relationship between SES and reading achievement (So and Chan, 1983; Ortiz, 1986; Fernandez and Nielsen, 1986; Chall, Jacobs, and Baldwin, 1990; Snow et. al., 1991; Elley, 1992; Lance, Wellborn, and Hamilton-Pennell, 1993; Mullis, Campbell, and Farstrup, 1993; Krashen and O’Brien, 1996).

5. They are more likely to have access to a library. Raz and Bryant (1990) reported that middle-class children averaged more than nine trips to the library each month, while “disadvantaged” children averaged fewer than four. McQuillan (in press), in an analysis of data from the National Household Education Survey, reported that parents with higher levels of education take their children to the library more frequently.

6. They are more likely to have a quiet place to read and study at home, and are more likely to have a good diet.

SES and Bilingual Education

Well organized bilingual education programs provide, in addition to comprehensible input in English, subject matter knowledge in the primary language and literacy development in the primary language. Subject matter knowledge gained through the first language helps make the English the children hear and read more comprehensible, while literacy gained in one language transfers to the second language.

Advantages 1, 2, 3, 4 and 5, listed above, provide limited English proficient children from more affluent backgrounds with a de facto bilingual education program. Greater first language literacy environment (advantages 4 and age, while greater subject matter (advantage 1), parental help (advantages primary language are of addition kindergarten.

Implied in the above discussion is the factors typically associated with high reading materials in the home is associated with achievement (advantage 6: 1996; Feigin, 1995). Thus, high SES advantages. Low SES children have pointed out (Cummins, 1984) (and so crucial is that we can improve the academic these factors in school.

The interpretation of the Toronto, LA both good news and bad news. It con the right track when they provide literate primary language. In doing this, the child’s home environment that are positive relationship between SES and yet managed to level the playing field. SES is not predictive of English language that outside factors do not m

References


Constantino, R. 1995. Two small girls, one I


ion in their primary language, which latter knowledge.

lucated, better prepared to help with have more time to interact with the acting with the school (Berliner and

parents can provide tutoring in the Cho, discussed in chapter two).

ment, with many more books in the Ortiz, 1986; Raz and Bryant, 1990; a clear relationship between living in velopment (Ortiz, 1986; Krashen, 1988; id Hemphill, 1991). These children opment in the primary language, a studies showing a strong relationship it (So and Chan, 1983; Ortiz, 1986; ohs, and Baldwin, 1990; Snow et. al., id Hamilton-Pennell, 1993; Mullis, id O’Brien, 1996.

o a library. Raz and Bryant (1990) ed more than nine trips to the library children averaged fewer than four. data from the National Household with higher levels of education take

tice to read and study at home, and are

programs provide, in addition to ct matter knowledge in the primary he primary language. Subject matter language helps make the English the nsible, while literacy gained in one e, provide limited English proficient s with a de facto bilingual education

program. Greater first language literacy, resulting from living in a more print-rich environment (advantages 4 and 5) helps children entering school at any age, while greater subject matter knowledge from previous schooling (advantage 1), parental help (advantage 2) and tutoring (advantage 3) in the primary language are of additional help to those entering later than kindergarten.

Implied in the above discussion is the view that SES is not causative. Rather, factors typically associated with high SES are causative. The presence of reading materials in the home is associated with social class, but contributes to reading achievement independent of the contribution of social class (Ortiz, 1986; Fejgin, 1995). Thus, high SES is not the only way to provide these advantages. Low SES children have succeeded, as several scholars have pointed out (Cummins, 1984) (and some high SES children have not). What is crucial is that we can improve the achievement of LEP children by providing these factors in school.

The interpretation of the Toronto, LA and NY data presented here, if correct, is both good news and bad news. It confirms that our bilingual programs are on the right track when they provide literacy and subject matter knowledge in the primary language. In doing this, they replicate those aspects of the high SES child’s home environment that are helpful for school. But finding a strong positive relationship between SES and school success tells us that we have not yet managed to level the playing field: Our goal should be programs in which SES is not predictive of English language development, schools that provide such a rich print environment, and such excellent education in the primary language that outside factors do not matter.

References


Mujica, B. 1995. Findings of the New York City longitudinal study: Hard evidence on bilingual and ESL programs. READ Perspectives 2,2:7-34.


Snow, C., Barnes, W., Chandler, J., Goetz Expectations: Home and School Influenc Press.


book ownership and reading to young hool oriented families. The Reading mic excellence of American Jewish and
1 and Hispanic scholastic achievement: 43-70.
ed. Multicultural Newsletter, Peoples Education Association, Maywood, NJ.
Analytic Review of Research Literature.

7 The relationship between free reading cs in Context: Connecting Observation 1-298.
collections and reading achievement in 18,3: 71-77.
tudents and public library use in the longitudinal study: Hard evidence on 2,2:7-34.


tional Progress of Students in Bilingual 994. NYC Board of Education.
proficiency among Hispanic, Black, and 5: 58-76.
phonological awareness and children's ology 8: 209-225.


